Printed Page:- 04			ect f	ርላላ	Δ•_	1 CS	М	በራበ	1			
111111	•	Subject Code:- ACSML0601 Roll. No:										
NO	IDA	INSTITUTE OF ENGINEERING AND	TEC	HN		OGY	, G	REA	ATE	R N	NOII)A
		(An Autonomous Institute Affiliate					-					
		B.Tech	A 753			•••	.0.0	4.				
		SEM: VI - THEORY EXAMIN				23- 2	024	!)				
Tim	e: 3 F	Subject: Machine L Hours	eari	111115	5			Ī	Max	. M	arks	: 100
		structions:						-		• 1,1		. 100
IMP:	Verif	fy that you have received the question paper	with	the	cor	rect o	cou	rse, o	code,	, br	anch	etc.
		estion paper comprises of three Sections -A,	<i>B</i> , &	& C	It c	onsis	ts c	of Mi	ıltipl	e C	hoic	e
		(MCQ's) & Subjective type questions.	ni a ha	· h	md c	ida a	of a	ach c	ag+	ion		
		m marks for each question are indicated on t e your answers with neat sketches wherever t	_			iae o	y ec	icn q	juesi	ion.		
		suitable data if necessary.	,,,,,,	BBC	<i>y</i> •							
5. <i>Pre</i> .	ferabi	ply, write the answers in sequential order.										
		t should be left blank. Any written material a	fter	a bl	ank .	sheet	wi	ll no	t be			
evalud	ited/c	checked.										
SECT	ION-	[-A										20
		all parts:-				Λ						
1-a.		What is machine learning? (CO1)										1
1 4.	(a)	A subset of artificial intelligence		1	5							-
	(b)	A type of computer programming language	re.									
	(c)	The study of human learning										
	(d)	None of the above										
1-b.	` ,	Which of the following is NOT a type of mac	chine	e lea	rnin	σ? ((:O1)				1
1 0.	(a)	Supervised learning	,,,,,,,,	100		B. (C		- /				-
	(b)	Traditional programming										
	(c)	Unsupervised learning										
	(d)	Reinforcement learning										
1-c.	R	Regression is a supervised learning task used	for:	(Co	D2)							1
	(a)	Categorizing data points into classes										
	(b)	. Predicting numerical values										
	(c)	Grouping data points into clusters										
	(d)	None										
1-d.		What type of regression can be used to mode	l rela	atio	nship	s wi	th n	nulti	ple			1
independent variables? (CO2)												
	(a)	Linear Regression										
	(b)	Polynomial Regression										

	(c)	Multiple Linear Regression	
	(d)	Logistic Regression	
1-e.	V	That is the primary goal of clustering in machine learning? (CO3)	1
	(a)	Classification	
	(b)	Data compression	
	(c)	Dimensionality reduction	
	(d)	Grouping similar data points	
1-f.		-Nearest Neighbor (K-NN) is primarily used for which type of machine learning ask? (CO3)	1
	(a)	Clustering	
	(b)	Regression	
	(c)	Classification	
	(d)	Dimensionality reduction	
1-g.	V	That is Bayesian Learning primarily concerned with? (CO4)	1
	(a)	Unsupervised learning	
	(b)	Supervised learning	
	(c)	Probabilistic reasoning	
	(d)	Feature engineering	
1-h.	Ir	n ensemble methods like Bagging, what is the primary goal? (CO4)	1
	(a)	Reduce overfitting	
	(b)	Increase bias	
	(c)	Reduce variance	
	(d)	Boost the accuracy of a single model	
1-i.	W	That is Reinforcement Learning? (CO5)	1
	(a)	A type of supervised learning	
	(b)	A machine learning approach for making predictions	
	(c) rece	A type of learning where an agent interacts with an environment and learns by iving rewards and penalties	
	(d)	A form of unsupervised learning	
1-j.	W	What is the core idea behind Q Learning in Reinforcement Learning? (CO5)	1
	(a)	It's a type of deep learning algorithm	
	(b) state	Learning to predict the expected cumulative reward for taking an action in a given	ì
	(c)	A supervised learning approach	
	(d)	A clustering algorithm	
2. Att	tempt	all parts:-	
2.a.	Н	low does machine learn from data? (CO1)	2
2.b.	D	rifferentiate linear and logistic regression in terms of task accomplished by these	2

	1 1.1	(000)									
	algorithms		1 6 1		1 1 2	(302)		2			
2.c.											
2.d.	How does the Bayes Optimal Classifier make decisions based on probabilities? (CO4)										
2.e.	Describe the primary objective of a learning task in Reinforcement Learning. (CO5)										
SECTIO	<u>N-B</u>							30			
3. Answe	er any <u>five</u> o	f the follow	ing:-								
3-a.	Discuss essential steps in designing a learning system, from data collection to model deployment. (CO1)										
3-b.	Summarize the history of machine learning, highlighting significant milestones and developments.(CO1)										
3-c.	Discuss commonly used metrices to evaluate a classification model. (CO2)										
3-d.	Discribe various types of regression algorithms. (CO2)										
3.e.	Write some real world applications of clustering. (CO3)										
3.f.	Define Bayes Optimal Classifier and provide examples to demonstrate its application. (CO4)										
3.g.	In Reinforcement Learning, what is the primary goal of a learning task, and how does it differ from supervised learning? (CO5)										
SECTIO	<u>N-C</u>					7 12		50			
4. Answe	er any <u>one</u> o	f the follow	ing:-								
4-a.	Apply candidate elimination method to find consistent hypothesis on the given dataset. (CO1)										
	example	Shape	Size	Color	Surface	Thickness	Target concept				
	1	Circular	Large	Light	Smooth	Thick	Malignant				
	2	Circular	Large	Light	Irregular	Thick	Malignant				
	3	Oval	Large	Dark	Smooth	Thin	Benign				
	4	Oval	Large	Light	Irregular	Thick	Malignant				
4-b.	5 Circular Small Light Smooth Thick Malignant Define "underfitting" and "overfitting" in machine learning. Explain their causes and suggest remedies.(CO1)										
5. Answe	er any <u>one</u> o	f the follow	ing:-								
5-a.	Explain the role of cost function in linear regression model with the help of a suitable example.(CO2)										
5-b.	Explain the fundamental assumptions of linear regression models, and why are they important in interpretation? (CO2)										
6. Answe	er any <u>one</u> o	f the follow	ing:-								
6-a.	How does	K-means cl	ustering w	ork in sim	ple terms? (C	CO3)		10			
6-b.	Apply Single agglomerative hierarchical clustering on given distance metrics.										

(CC) 3)				
	Pi	P2	P3	P4	B
PI PA PA PAPE	093611	07510	09(1)	080	0

7. Answer any one of the following:-

- 7-a. Can you briefly describe the Bayes Optimal Classifier's approach to balancing prior probabilities and evidence likelihood in classification? (CO4)
- 7-b. What practical advantages do Bagging and boosting offer for improving model performance? (CO4)
- 8. Answer any one of the following:-
- 8-a. Discuss the various advantages and disadvantages of Reinforcement Learning. 10 (CO5)
- 8-b. What is the role of Q-function approximation in Reinforcement Learning? (CO5) 10

